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a b s t r a c t

The structural geometry in the Barr conglomerate and the neighboring rocks in the western flank of the
Meso- to Neoproterozoic South Delhi Fold Belt indicate superposed deformation, with structures
developed by horizontal dextral simple shear deformation superimposed on earlier structures formed
during approximately ESE-WNW compression and subvertical maximum elongation. The first defor-
mation produced NNE-SSW trending subvertical schistosity, and associated steeply plunging isoclinal
folds, mineral lineation and pebble elongation lineation having almost downdip alignment on the
schistosity surface. The second deformation produced dextral folds both on bedding and schistosity
surfaces and modified the shape of the pebbles already deformed by the first deformation. On vertical
sections perpendicular to the schistosity trace the pebbles show sub-ellipsoidal shape with their mean
elongation direction parallel to the schistosity trace. On the horizontal section the pebbles often show
asymmetrical shape and asymmetrical deflection of the schistosity surface around the pebbles. The mean
elongation direction makes a small angle (2�e8�) in the counter-clockwise sense with the schistosity
surface. This obliquity is due to modification of post-first-deformation sub-ellipsoidal shape by later
horizontal simple shear using the schistosity surface as the movement plane. Analytical expressions are
derived for the modification of an original ellipse by simple shear parallel to the long axis of the ellipse. A
family of curves has been generated to depict the change in axial ratio and orientation of long axis for
different initial axial ratios, and for different values of shear strain (g). Using these curves it has been
possible to factorize the total strain into two components representing the earlier compression and the
later simple shear. It is noted that the computed earlier shortening strain ellipsoids are consistently in the
flattening field close to the line of pure oblate ellipsoids in the Flinn plot. There is no systematic spatial
control on the variation in the values of shear strain (g), strain ellipsoid shape parameter (k), and
intensity of distortion (d) as one proceeds south to north along the strike of the conglomerate.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Pebble shapes in deformed conglomerates have long been used
to estimate finite strain in rocks. If the pebbles were all initially
spherical and had the same viscosity as the matrix, they would
behave as passive markers, and the pebble shape after deformation
would represent the strain ellipsoid. On the other hand, if the initial
shapes of the pebbles were ellipsoidal, their final shapes would not
represent the strain ellipsoid but would depend upon the finite
strain and the initial shape and orientation of the pebble. The basic
principle of strain measurement from initial non-spherical markers
a).

All rights reserved.
was first discussed by Ramsay (1967). This led to a method, known
as the Rf-4 method, that was later elaborated by several workers
(Dunnet, 1969; Ramsay and Huber, 1983; Lisle, 1985; and references
therein). Graphical and algebraic methods have been devised to
compute the shape of finite strain ellipse from measurement of
shapes of deformed pebbles that were initially elliptical (De Paor,
1988; Dunnet, 1969; Dunnet and Siddans, 1971; Elliott, 1970; Gay,
1968a,b; Holst, 1982; Lisle, 1977; Mukhopadhyay and
Bhattacharya, 1969; Oertel, 1978; Shimamoto and Ikeda, 1976;
Wheeler, 1984). The hyperbolic net of De Paor (1988) provides
a handy method for estimating the strain ratio and orientation of
the strain ellipse using the principle of Rf-4 method. Shimamoto
and Ikeda (1976) proposed an algebraic method of strain analysis
from a population of deformed elliptical markers. This method is
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more objective than the graphical Rf-4 method. The Rf-4 method is
suitable for pebbles having ideally random orientations though
a number of authors including Elliott (1970), Dunnet and Siddans
(1971) and Lisle (1985) have discussed methods to tackle the
problem of initial pebble fabric.

Two other aspects which are important in this context are
viscosity contrast between pebbles and matrix and pebble
concentration (Bilby et al., 1975; Freeman,1987; Gay, 1968a,b, 1969;
Gay and Fripp, 1976; Mandal et al., 2003; Vitale and Mazzoli, 2005).
Bilby et al. (1975) and Gay (1968a) showed that for isolated more
competent circular or elliptical objects in a matrix the object strain
ratio is less than the bulk strain ratio and their difference is
a function of the viscosity contrast. For two-dimensional strain they
presented equations linking the bulk strain ratio with the object
strain ratio and the viscosity contrast. Numerically solving the
EshelbyeBilby equations Freeman (1987) showed that objects more
competent than the matrix will have deformed shapes with larger
k-values (Flinn, 1962) than equivalently shaped and oriented
passive markers, and the effect increases with increasing viscosity
ratio. Treagus and Treagus (2001) further showed that competent
elliptical objects with axial ratios of 3 or more will strain more than
circular objects of the same viscosity, and if the objects are
incompetent theywill strain less. Such effect would be insignificant
for competent objects with axial ratio of less than 2. The data
compiled by Lisle (1985), however, show that most undeformed
conglomerates have initial axial ratios in the range of 1.5e2. Such
pebbles would strain only marginally more that circular objects of
same viscosity.
Fig. 1. a. General geological map of South Delhi Fold Belt (redrawn after Gupta and Bose, 20
Barr, Be: Beawar, Ph: Phulad, Bh: Bhim, R: Ranakpur, J: Jaswantgarh, Ba: Basantgarh. b. Litholo
strain analysis.
The conclusions of the workers mentioned above apply to iso-
lated objects in a matrix where an individual object is not influ-
enced by the surrounding ones. Gay (1968a) showed that in
a multi-object system the number and the volume of the objects
relative to the matrix have a bearing on the effective viscosity. He
coined the term “effective mean viscosity ratio” (Rm) that would
control the bulk strain of the rock and gave a mathematical
expression for it. He noted that Rm rapidly decreases with
increasing object concentration and approaches the value of 1 in
a densely packed system. Numerical analysis by Mandal et al.
(2003) also reveals that the ratio of the object to the bulk strain
rate increases non-linearly with greater packing density. For
competent objects the object strain rate is less than the bulk strain
rate and both approach the same value for high object concentra-
tion. Working with naturally deformed rocksVitale and Mazzoli
(2005) showed that in a multi-object system the measured finite
strain for competent objects is less than that for the bulk rock, and
the effective (measured) finite strains for both bulk rock and objects
and the effective viscosity ratio are all less than the corresponding
values in case of isolated objects with no particle interaction.
Further, the measured values of object strain, bulk strain and
effective viscosity ratio decrease rapidly with increasing object
concentration. The ratio of effective bulk strain to object strain and
the viscosity ratio both approach the value of 1 for maximum
packing. Thus theoretical and observational data from a number of
workers indicate that a high concentration of pebbles, even with
large viscosity contrast, would bring the effective mean viscosity
ratio close to 1, implying that the pebble strain would be the same
as the bulk strain. In the present study the average concentration of
00). Inset shows geographic location of South Delhi Fold Belt. P: Pushkar, A: Ajmer, B:
gical map of the area (marked by arrow in Fig. 1a) showing the locations of samples for



Fig. 2. In the sketches and photographs P, and S represent pebble and schistosity respectively. a. Vertical section of Barr Conglomerate facing south showing thin streaks(shown by
arrow) of quartzo-feldspathic materials (could represent disrupted primary layering), giving a banded appearance. The long axes of pebbles are parallel to the trace of the schistosity
in this section. Scale bar is twelve inches. b. Cartoon showing the strain evolution in the area. I - Initial stage, II - After irrotational orthogonal extension-contraction (D1);
development of subvertical schistosity, and downdip elongation lineation, III - After sub-horizontal dextral simple shear (D2); ellipse modified on YZ plane, no change in vertical
direction. c. Long axes of pebbles oriented oblique to the trace of the schistosity in a counter-clockwise sense (horizontal surface, YZ plane). Diameter of the coin is 2.3 cm. d. Pebble
with two diagonally opposite angular corners, other two corners being rounded. Note asymmetric deflection of schistosity around the pebble. Scale bar is 6 cm. e. Sketch of pebble
with shape as shown in Fig. 2d. Note asymmetric deflection of schistosity round the pebble. f. Foliated granite pebble seen on plan. Note the irregular boundary of the pebble. Main
schistosity (S1) is cut across by a spaced cleavage (S2). g. Flattened pebble and foliation in matrix dextrally kinked. Towards right the kink passes into a series of en echelon cracks
almost parallel to the axial plane of the kink folds. Diameter of the coin is 2.3 cm. h. Superellipse (dotted line) with n ¼ 4.0, axial ratio ¼ 2.5. Dextral simple shear (g ¼ 2.5) gives rise
to asymmetric shape as in Fig. 2 d, e.
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Fig. 3. Outcrop of Barr Conglomerate south of Barr viewed from north. The schistosity
plane is the XY plane of the first phase strain ellipsoid. Two planes of measurement are
the vertical and the horizontal sections, which represent the XZ and YZ planes of the
first phase strain ellipsoid.
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the pebbles that have been used for strain analysis is about 40% by
volume. From the graph of Gay (1968a, Fig. 10), Rm of such a pebble-
matrix system would be close to 1. Therefore, the object strain
computed in this study closely approximates the bulk strain.

Another important conclusion of the above studies is that
though in such a system the strain in the matrix surrounding the
objects is heterogeneous, the objects themselves deform homoge-
neously if they have circular or elliptical shape and are not closely
packed (Treagus and Treagus, 2001). Closely packed objects would
be heterogeneously strained; isolated non-elliptical objects would
also deform heterogeneously (Treagus and Lan, 2003; 2004). In our
analysis we have assumed that in general the pebbles have
deformed homogeneously.

In superposed deformation if the successive strains are all
homogeneous the final strain would also be homogeneous and
would be represented by a single strain ellipsoid (Ramsay, 1967). If
only the final strain ellipsoid is known, to separate the strains
resulting from each deformation is a difficult and often an impos-
sible task. Here we discuss the special situation of superposition of
simple shear on pure shear and attempt to compute the two
different strains from measurements on deformed pebbles in
a conglomerate.

2. Deformation pattern

The Barr Conglomerate, which is the subject of this study, occurs
along the western margin of the Meso- to Neoproterozoic South
Delhi Fold Belt (SDFB) in Rajasthan, western India. It is the basal
unit of the Barotiya Group (within the Delhi Supergroup), which
overlies the basement of Banded Gneissic Complex (BGC) exposed
to its west (Heron,1953; Gupta and Bose, 2000) (Fig.1). This contact
has been referred to as a strong deformation/shear zone (Ghosh
et al., 1999; Sen, 1980; 1981; Sengupta and Ghosh, 2004; 2007).

A structural study in the rocks of the Barotiya Group indicates
the presence of three deformational phases (Dasgupta, 2010). The
first deformation episode (D1) produced long-limbed isoclinal folds
with axial planar schistosity or gneissosity which became asym-
metrically folded with dextral vergence (Z-shaped folds) during the
second deformation phase (D2). Thin streaks of quartzo-feldspathic
material parallel to schistosity in the conglomerate probably
represent disrupted primary layers (Fig. 2a); bedding in the asso-
ciated calc-gneiss and the major lithological contacts are parallel to
the D1 schistosity (S1) due to isoclinal nature of the folds. The last
phase D3 is weak and has produced broad warps of schistosity and
bedding on transverse east-west axial planes. Details of the struc-
tural geometry will be described elsewhere; here we only mention
that the sense of shear has been worked out from (a) s-structures
around feldspar porphyroclasts in the acid volcanics, (b) mica fish
in the mylonitic rocks, (c) SeC fabrics in local shear zones, and (d)
elongation of small quartz grains oblique to the main schistosity
which acted as the movement planes in mylonitic quartzites. We
interpret that earlier (D1) irrotational orthogonal extension-
contraction (pure shear) was followed by horizontal dextral
simple shear (D2) (Fig. 2b). The combination of irrotational
orthogonal extension-contraction and simple shear is analogous to
transpression, but here the two are not simultaneous. Superposi-
tion of simple shear on earlier irrotational orthogonal extension-
contraction strain is indicated by the refolding of isoclinal folds
by later asymmetrical (dextral) folds and dextral folding of the D1
schistosity (S1) and development of D2 crenulation cleavage or
spaced cleavage (S2). Moreover, in calc-gneisses, the D2 planar
fabric (S2) is defined by later biotite flakes cutting across older
amphibole and pyroxene grains defining the D1 gneissosity.

Initial irrotational orthogonal extension-contraction followed
by sub-horizontal dextral simple shear is also reflected in the
pebble shapes of the Barr Conglomerate. The maximum elongation
of the pebbles on the schistosity surface is nearly downdip. On
vertical sections perpendicular to the schistosity the pebbles are
sub-ellipsoidal, and themean orientation of the long axes is parallel
to the schistosity trace indicating schistosity normal compression
(Fig. 2a). The effect of sub-horizontal dextral simple shear is seen on
the horizontal surface. The features indicative of this shear are, (i)
alignment of mean orientation of long axes of elliptical pebbles
oblique to the schistosity trace in a counter-clockwise sense
(Fig. 2c), (ii) asymmetric deflection of schistosity trace in thematrix
around the pebbles (Fig. 2d and e), (iii) oblique s-plane formed in
local shear zones cutting across flattened elliptical pebbles (Fig. 2f)
and (iv) dextral kinking of elliptical pebbles and schistosity within
the conglomerate (Fig. 2g).

Some pebbles in the Barr Conglomerate have a distinctive shape
characterized by an asymmetry with two diagonally opposite
angular corners, the two other corners being rounded (Fig. 2d, e).
Treagus and Lan (2000, 2003) have shown that similar shapes are
developed in incompetent objects in both pure shear and simple
shear if the initial shapes are squares with their sides askew to
either the elongation and shortening directions (pure shear) or the
shear direction (simple shear). Their model is not applicable in the
present case because the quartzite pebbles are expected to be more
competent than the micaceous schistose matrix. We propose that
this shape was formed by simple shear deforming an initial
superellipse (Gardner, 1965; Lisle, 1988) formed by earlier pure
shear. A superellipse has the general formula, ðx=aÞn þ ðy=bÞn ¼ 1.
Where n is >2, the shape is a rectangle with rounded corners.
Fig. 2h illustrates a superellipse (n ¼ 4) deformed by simple shear
with movement direction parallel to x-axis (g ¼ 2.5). The resultant
shape has the characteristic angular and rounded corners.



Table 1
Pebble shape (axial ratio) and orientation of long axes on the vertical plane (XZ plane) of measurement, at different locations. Angle of long axis of pebble is measured with
respect to trace of schistosity. Counter-clockwise angle is positive.

Location
number

Sample
size

Axial ratio Orientation of long axis (with respect
to the schistosity trace on the section)

Rf e f Method
(De Paor, 1988)

Harmonic
mean

Std.
deviation

Geometric
mean

Std.
deviation

Linear
correlation

Vector
mean

Std.
deviation

f (De Paor,
1988)

333 17 8.0 9.07 0.43 12.45 0.84 9.03 �0.65 0.23 0
334 30 5.5 6.47 0.10 7.98 0.70 5.95 �0.67 0.18 0.5
335 51 7.0 9.69 1.49 12.50 0.77 12.15 1.35 0.30 0
336 36 6.0 6.57 0.08 7.75 0.62 7.85 �0.05 0.35 0
337 27 6.0 6.38 0.10 7.89 0.69 6.68 �0.41 0.32 0
338 16 10.0 9.14 0.07 10.77 0.57 7.72 0.56 0.04 0.5
339 32 10.0 13.32 0.04 15.61 0.60 12.38 �0.59 0.02 0
340 26 5.7 6.53 0.06 7.00 0.37 7.51 �0.73 0.05 0
798 48 6.0 6.70 0.10 8.02 0.62 6.59 1.23 0.06 2
1256 34 7.0 5.91 0.13 7.51 0.70 7.49 �0.23 0.04 0
1257 28 4.6 4.84 0.12 5.67 0.60 6.37 0.39 0.02 0
1262 31 5.5 5.58 0.14 6.79 0.61 5.62 �0.10 0.04 0
1263 29 5.5 6.46 0.11 8.11 0.71 7.87 0.00 0.00 0
1264 31 6.0 5.73 0.10 6.83 0.63 5.79 �0.13 0.01 0
1320 30 5.5 5.45 0.13 6.66 0.66 5.37 0.57 0.04 0
8 23 2.2 4.42 0.08 4.64 0.31 4.40 �1.57 0.06 0
26 15 2.4 5.74 0.07 6.18 0.39 6.40 0.52 0.09 0
30 18 6.0 8.52 0.06 9.60 0.51 7.13 4.17 0.07 4
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3. Pebble measurements

Measurements of pebbles have been carried out at 18 locations
spread throughout the strike-length of the conglomerate band
extending over a distance of 13 km (Fig. 1b). The subvertical
schistosity plane is considered to be the XY plane of strain ellipsoid
of the first deformation (Ramsay and Huber, 1983; p. 184). The
mean orientation of the long axes of the pebbles on the schistosity
plane is considered to be the X-direction of this strain ellipsoid, and
is nearly down dip on the schistosity plane (Fig. 3). The Y and Z
directions are nearly horizontal, parallel and perpendicular to the
schistosity trace. The sub-horizontal shear used the schistosity
surface as the movement plane and the above mentioned Y-direc-
tion was the movement direction. This simple shear does not have
any effect in the X-direction, but the directions of Yand Z of the final
ellipsoid change slightly. The angle between the Z-direction of the
first ellipsoid and the Z-direction of the final ellipsoid is very small,
Table 2
Pebble shape (axial ratio) and orientation of long axis for the horizontal plane (YZ plane)
respect to trace of schistosity. Counter-clockwise angle is positive.

Location
number

Sample
size

Axial ratio

Rf e f method
(De Paor, 1988)

Harmonic
mean

Std.
deviation

Geom
mean

333 29 4.6 4.97 0.07 4.92
334 49 4.8 4.06 0.16 4.84
335 27 4.6 5.09 0.09 5.74
336 32 6.5 6.28 0.05 6.60
337 25 6.5 6.23 0.07 6.87
338 45 6.0 5.96 0.09 6.75
339 37 6.5 6.98 0.07 7.83
340 39 6.8 7.42 0.05 8.12
798 49 5.0 4.66 0.12 5.48
1256 34 5.5 5.06 0.10 5.72
1257 34 4.4 4.51 0.14 5.57
1262 39 4.8 4.55 0.13 5.30
1263 39 5.2 5.26 0.09 5.87
1264 25 4.0 4.81 0.09 5.34
1320 38 5.0 4.06 0.14 4.67
8 41 2.4 2.86 0.13 3.05
26 38 2.7 4.24 0.07 4.45
30 40 3.8 4.98 0.11 5.68
and as a first approximation the XZ planes of both the first and final
ellipsoids are taken to be the vertical plane.

Measurements for strain analysis were done on horizontal
planes (YZ plane of first and final ellipsoids) and on vertical joint
planes perpendicular to schistosity (XZ plane of first and final
ellipsoids) (Fig. 3). The 2-dimensional strain ratios were combined
to calculate the 3-dimensional strain.

Only the quartzite pebbles were used for strain analysis for the
following reasons:

a) These are the most common pebbles and outnumber the
granitic pebbles in any outcrop seen within the area.

b) The sharp boundaries of the quartzite pebbles make it easier to
measure them than the foliated granite pebbles with fuzzy
boundaries (Fig. 2f).

c) The range of size variation of the quartzite pebbles is large,
which ensures that the analysis has been done on a wide size
of measurement, at different locations. Angle of long axis of pebble is measured with

Orientation of long axis (with respect
to the schistosity trace on the section)

etric Std.
deviation

Linear
correlation

Vector
mean

Std.
deviation

f (De Paor,
1988)

0.36 4.54 3.72 0.06 4
0.60 4.96 3.27 0.20 5
0.53 4.48 6.52 0.04 10
0.32 6.48 5.62 0.33 5
0.48 5.33 3.20 0.37 3
0.50 4.93 2.13 0.21 2
0.49 6.41 1.95 0.06 0
0.41 7.11 3.26 0.06 4
0.62 3.63 4.20 0.05 5
0.51 5.53 1.35 0.06 0
0.67 4.91 2.73 0.05 4
0.57 3.35 4.77 0.06 4
0.52 4.62 3.97 0.06 4
0.49 3.72 4.44 0.07 5
0.53 4.85 2.08 0.07 5
0.37 2.77 0.70 0.13 2
0.32 4.54 4.93 0.07 5
0.53 5.05 7.28 0.09 10



Table 3
Harmonic mean and orientation of long axis for the horizontal plane (YZ plane) and vertical plane (XZ plane) of measurement, at different locations.

Location
number

Horizontal plane Vertical plane

No. of data Axial ratio Orientation of long axis
(with respect to the
cleavage on the section)

No. of data Axial ratio Orientation of long axis
(with respect to the
cleavage on the section)

Harmonic mean Std. dvn. Vector mean Std. dvn. Harmonic mean Std. dvn. Vector mean Std. dvn.

333 29 4.97 0.07 3.72 0.26 17 9.07 0.43 �0.65 0.23
334 49 4.06 0.16 3.27 0.20 30 6.47 0.10 �0.67 0.18
335 27 5.09 0.09 6.52 0.04 51 9.69 1.49 1.35 0.30
336 32 6.28 0.05 5.62 0.33 36 6.57 0.08 �0.05 0.35
337 25 6.23 0.07 3.20 0.37 27 6.38 0.10 �0.41 0.32
338 45 5.96 0.09 2.13 0.21 16 9.14 0.07 0.56 0.04
339 37 6.98 0.07 1.95 0.06 32 13.32 0.04 �0.59 0.02
340 39 7.42 0.05 3.26 0.06 26 6.53 0.06 �0.73 0.05
798 49 4.66 0.12 4.20 0.05 48 6.70 0.10 1.23 0.06
1256 34 5.06 0.10 1.35 0.06 34 5.91 0.13 �0.23 0.04
1257 34 4.51 0.14 2.73 0.05 28 4.84 0.12 0.39 0.02
1262 39 4.55 0.13 4.77 0.06 31 5.58 0.14 �0.10 0.04
1263 39 5.26 0.09 3.97 0.06 29 6.46 0.11 0.00 0.00
1264 25 4.81 0.09 4.44 0.07 31 5.73 0.10 �0.13 0.01
1320 38 4.06 0.14 2.08 0.07 30 5.45 0.13 0.57 0.04
8 41 2.86 0.13 0.70 0.13 23 4.42 0.08 �1.57 0.06
26 38 4.24 0.07 4.93 0.07 15 5.74 0.07 0.52 0.09
30 40 4.98 0.11 7.28 0.09 18 8.52 0.06 4.17 0.07
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range, thereby negating any bias on size dependency of the
analysis.

During the site selection and collection of data the following
points were taken into consideration:

a) Pebbles within an area of generally 2 m � 2 mwere measured.
b) It was ensured that the pebbles did not impinge upon one

another.
c) Data were collected from places where the schistosity was

overall planar and unfolded.

The principal parameters which were measured for each indi-
vidual pebble were,

i. Lengths of long and short axes of each pebble
ii. Orientation (f) of long axis with respect to the schistosity

trace. A counter-clockwise angle (dextral asymmetry) from
the schistosity trace is taken to be positive, while a clockwise
angle (sinistral asymmetry) is taken to be negative.

Other parameters which were measured include,

i. The areal density of the pebbles over the area of measure-
ment, usually from the photographs of the planes of
measurement.

ii. The attitude of the pebble long axis lineation on the schis-
tosity surface.

iii. The attitude of the schistosity.
iv. The attitudes of the two planes of measurement.

In this paper we present the summary data processed from the
raw data collected in the field. The raw data are available on request
from the first author.
Fig. 4. Representative plot of axial ratio versus orientation of long axis of the pebbles
of the sub-horizontal plane at location 333 on the hyperbolic net of De Paor (1988).
Reference line R represents trace of schistosity. Note that the symmetry line (repre-
sented by arrow) is not parallel to trace of the schistosity.
4. Methodology for calculating the strain ratio

The data collected from the two perpendicular measurement
sections at each location were treated separately to compute the
2edimensional strain ratio. The results obtained are presented in
Tables 1, 2 and 3. A preliminary estimate of the axial ratio and the
orientation of the two-dimensional strain ellipse was calculated by
Rf-fmethod using De Paor’s net for both the measurement surfaces
(Fig. 4).

It is observed that each population has a fairly large range of Rf
values but a very narrow range of f values. The axial ratios of the
deformed pebbles on the YZ section have a much larger range than
on the XZ section. The mean angle made by the long axis of the
pebbles with the schistosity trace (f) is non-zero in anticlockwise
sense (maximum of 14�) on the YZ section and is almost 0� on the
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XZ section. On the vertical (XZ) plane, the vector mean of the
pebble long axes is parallel to the schistosity trace and the standard
deviation around the vector mean angle is very small (Fig. 5); the
fluctuation of the pebble long axes is also small (maximum 7�). The
vector mean of the pebble long axes on the YZ plane is not parallel
to the schistosity trace. The test of symmetry does not hold good in
this case. Because of the above reasons, we conclude that the Rf-f
method may not be appropriate for strain determination.

We adopted a statistical approach of determining the axial ratio
and the orientation of the two-dimensional ellipse which would
also test the accuracy of the results obtained by Rf-f method. Our
objective was to characterize the pebble population on each
measurement plane with an average axial ratio and an average
orientation of long axis, and use these for estimating the strain
parameters.

The average orientation of the long axes is given by the vector
mean of the angles between the pebble long axis and the trace of
the schistosity. Three estimates of the average axial ratio that are
determined are harmonic mean, geometric mean (Lisle, 1977) and
the slope of the best fit line on x-y plot employing the method of
linear correlation (Mukhopadhyay, 1973). The results are presented
in Tables 1, 2 and 3.

Lisle (1977) estimated the finite strain ellipse from the arith-
metic, geometric and harmonic means of the axial ratios of the
Fig. 5. Representative plots of axial ratio versus orientation of long axis of the pebbles for
measurement, ‘v’ denotes the vertical plane of measurement. The schistosity trace is repres
either side of schistosity, while on horizontal plane symmetry line is not parallel to schisto
individual synthetically deformed elliptical markers in a pop-
ulation. He discussed two mathematical models (uniform and
random mode), in which he considered suites of elliptical markers
of known initial axial ratio deformed by pure shear yielding a final
axial ratio. He observed that none of the means exactly represents
the strain ellipse. According to him, the harmonic mean is the
closest approximation to the strain ellipse, followed by the
geometric mean.

In the present study, it is observed that for a given population
the geometric mean is greater than the harmonic mean; and the
ratio determined by the linear correlation method is close to the
harmonicmean, at places slightly greater than and at places slightly
less than the harmonic mean. Following Lisle (1977) we have used
the harmonicmean as the best estimate of the axial ratio of the final
ellipse derived from an initial circle, which would give the two-
dimensional strain ratio ð

ffiffiffiffiffiffiffiffiffiffiffiffi
l1=l2

p
Þ.

5. Discussion of the results obtained

5.1. Finite strain ellipse on XZ plane (Table 1)

The vector mean of the orientation of long axes of the pebbles
with respect to the trace of the schistosity on the plane of
measurement varies from �1.57� to þ1.35� (standard deviation
three different locations, namely 333, 340 and 26. ‘h’ denotes the horizontal plane of
ented by the 00 line. Note that on vertical plane data are symmetrically distributed on
sity trace.



Fig. 6. Deformation of an initial ellipse by shearing in a direction parallel to x-coor-
dinate axis produces another ellipse. OP and OQ are the semi major and minor axes of
the initial ellipse. OP’ and OQ’ are the semi major and minor axes of the deformed
ellipse (see text for details).
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ranging from 0� to 0.32�) excepting location #30 where the angle is
>4� and is quite different from the rest. Hence for all practical
purposes the mean long axis can be considered to be parallel to the
trace of the schistosity. This can be taken to represent the orien-
tation of the long axis of the final strain ellipse with a reasonable
degree of certainty (Ramsay, 1967; Ramsay and Huber, 1983). The
harmonic means at different localities vary from 4.42 to 13.32. At
each locality the standard deviation is small, generally of the order
of w0.1. The true axial ratio of the strain ellipse is considered to lie
within the �2 s interval around the harmonic mean at 95% confi-
dence interval (Lisle, 1977).
5.2. Finite strain ellipse on YZ plane (Table 2)

On this plane of measurement the average fluctuation of the
orientation of long axes of the pebbles is 18� and ranges from 7� to
30� with only one location (#8) having a fluctuation of 45�. The
vector means always make a counter-clockwise angle with the
Fig. 7. Plot of the final axial ratio (Rf) against the orientation of the long axis of the ellipse (f
axial ratios (1.1e6.0) sheared by different values of g (0.01e5.00). The solid lines represent th
broken lines denote the contours of g. Final ellipse P is unstrained to initial ellipse Q along
schistosity trace (0�), and the angles vary from 1.35� to 7.28�

(barring 0.7� at #8, which is quite dissimilar from the rest of the
locations).

The harmonic means vary from 2.86 to 7.42. The standard
deviation at each location is of the order of w0.1. The harmonic
mean (representing the strain ratio) and the vector mean (repre-
senting the orientation of long axis of the final strain ellipse) for the
two measurement planes for all locations have been listed in
Table 3.
6. Analysis of superposed strain

Any finite strain may be represented by a deformation matrix
and the orientation and geometry of strain ellipsoid may be
calculated from the components of the deformation matrix
(Ramsay and Huber, 1983). Irrotational orthogonal extension-
contraction, simple shear, rotation etc. are specific deformation
types characterized by specific forms of deformation matrix. Any
finite deformation matrix can be factorized in an infinite number of
ways into two or more deformation matrices, each representing
a particular deformation occurring in a particular sequence. A
common factorization is decomposition into irrotational orthog-
onal extension-contraction, and simple shear, with or without
dilation. The following equation gives three possible ways of fac-
torizing a given 2-D deformation matrix (D) (Fossen and Tikoff,
1993; Tikoff and Fossen, 1993).

D ¼
�
k1 0
0 k2

��
1 gs;p
0 1

�
¼

�
1 gp;s
0 1

��
k1 0
0 k2

�
¼

�
k1 G
0 k2

�

(1)

where, G ¼ gðk1 � k2Þ=lnðk1=k2Þ
The first factorization on the left is irrotational orthogonal

extension-contraction following the simple shear, the second
factorization represents simple shear following the irrotational
orthogonal extension-contraction, and the third expression is for
transpressionwith simultaneous orthogonal extension-contraction
) defining a family of curves generated numerically with initial ellipses having different
e locus of the deforming ellipse of a fixed initial axial ratio for variable shear strains. The
the locus.



Fig. 8. Plots on Fig. 7 of the harmonic mean of axial ratio against the vector mean of the long axis orientation of the pebbles with respect to schistosity trace on the horizontal plane
of measurement for different locations.
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and simple shear. G may be called the effective shear strain in
simultaneous simple shear and orthogonal extension-compression
(transpression). The relation between the numerical values of shear
strain in the simple shear component in the three cases is (Fossen
and Tikoff, 1993),

gp;s ¼ G=k2 ¼
�
gs;p

�
ðk1=k2Þ (2)

It is obvious that; gp;s>G>gs;p (3)

It is important to note that for the same finite strain the
magnitude of the shear component is dependent on the order of
superposition of pure and simple shear. However, the magnitude of
the irrotational orthogonal extension-contraction (pure shear)
component is the same in the three cases.

We have already discussed that in the present area the final
structural pattern resulted from first irrotational orthogonal
extension-contraction deformation (D1) followed by horizontal
simple shear. The pebble shapes observed are thus a result of these
two episodes of deformation. The strong contraction and elonga-
tion associated with D1 is evident from the appressed nature of the
pebbles on the XZ section, where the long axes of the pebbles are
aligned parallel to the schistosity trace. The horizontal dextral shear
primarily modifies the shape and orientation of the pebbles on the
horizontal (YZ) plane only and does not significantly alter the
pebble shape on the vertical plane. Though strictly speaking the Z-
direction of the final strain is not perpendicular to the schistosity,
the difference is so small that for all practical purposes the vertical
plane normal to the schistosity can be considered to be the XZ plane
of the final finite strain as well as of the first strain.
Fig. 9. Plot of D1 strain ellipsoids final strain ellipsoids in Flinn plot.
6.1. Mathematical modeling of deformation with simple shear
superimposed on compression

We have mathematically modeled the change of the shape of an
initial ellipse by simple shear in a direction parallel to its long axis.
In this model we consider that the initial orthogonal extension-
contraction produced a strain ellipsoid whose longest axis (X)
was vertical and intermediate and shortest axes were horizontal.
On the horizontal surface the strain ellipse section (YZ) would have
the long axis parallel to the trace of the schistosity. We chose
a Cartesian coordinate system with abscissa (x-axis) parallel to the
schistosity trace and the later simple shear hasmovement direction
parallel to this axis (Fig. 6). Equations are derived to specify the
orientation and axial ratio of the final strain ellipse for different
values of g and axial ratio of the initial ellipse (Appendix-A).

If the initial axial ratio(OB/A) and g are specified a family of
curves can be drawn for a range of initial axial ratios depicting the
values of the final axial ratio (Rf) and F at different g values.
Contours can be drawn for equal g values. Such a family of curves
has been generated by varying the initial axial ratio from1.1 to 6.0
and the g-value from 0 (marking the initial values prior to defor-
mation) to 5 (Fig. 7).
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It is observed that for ellipses which have a low value of initial
axial ratio, f increases rapidlywith increasing g until a critical value
of g is reached; the axial ratio increases very slightly at this stage.
Beyond the critical value, f starts to decrease, though at a slow rate
and the axial ratio increases at a fast rate. There is a sharp inflection
in the curve signifying change over from increasing f to decreasing
f. With increase in the initial axial ratio the pattern remains the
Fig. 10. Variation of (a) k, (b) d and (c) g from north to south along the conglomerate band. O
are plotted.
same but the inflection point in the curve becomes less
pronounced. At high values of initial axial ratio there is no sharp
inflection and f increases at fast rate in the initial stage of defor-
mation and at a very slow rate at higher values of g. The axial ratio
on the other hand increases slowly at the initial stage and very fast
at the later stage; beyond g ¼ 3.0 the curves tend to become
asymptotically parallel to the Rf axis.
n the abscissa distances of different locations from location 26 (southernmost station)



Table 4
Different strain parameters calculated for the strain ellipsoid representing the initial extension-contraction strain (D1) after taking away the effect of dextral simple shear, at
different locations.

Location
number

Axial ratio on
the horizontal plane
(Harmonic mean)

g on the
horizontal
plane

Initial axial
ratio (read off
from the graph)

Axial ratio on
the vertical plane
(Harmonic mean)

X:Y:Z a (X/Y) b (Y/Z) kFlinn dFlinn

333 4.97 1.4 4.50 9.07 9.07:4.50:1 2.02 4.50 0.29 3.64
334 4.06 0.8 3.90 6.47 6.47:3.90:1 1.66 3.90 0.23 2.97
335 5.09 2.1 3.80 9.69 9.69:3.80:1 2.55 3.80 0.55 3.20
336 6.28 2.7 4.50 6.57 6.57:4.50:1 1.46 4.50 0.13 3.53
337 6.23 1.9 5.60 6.38 6.38:5.60:1 1.14 5.60 0.03 4.60
338 5.96 1.2 5.60 9.14 9.14:5.60:1 1.63 5.60 0.14 4.64
339 6.98 1.6 6.50 13.32 13.32:6.50:1 2.05 6.50 0.19 5.60
340 7.42 2.8 6.20 6.53 6.53:6.20:1 1.05 6.20 0.01 5.20
798 4.66 1.4 4.10 6.70 6.70:4.10:1 1.63 4.10 0.2 3.16
1256 5.06 0.5 5.00 5.91 5.91:5.00:1 1.18 5.00 0.05 4.00
1257 4.51 0.8 4.20 4.84 4.84:4.20:1 1.15 4.20 0.05 3.20
1262 4.55 1.4 4.00 5.58 5.58:4.00:1 1.4 4.00 0.13 3.03
1263 5.26 1.6 4.70 6.46 6.46:4.70:1 1.37 4.70 0.1 3.72
1264 4.81 1.5 4.20 5.73 5.73:4.20:1 1.36 4.20 0.11 3.22
1320 4.06 0.55 4.00 5.45 5.45:4.00:1 1.36 4.00 0.12 3.02
8 2.86 0.1 2.80 4.42 4.42:2.80:1 1.58 2.80 0.32 1.89
26 4.24 1.3 3.80 5.74 5.74:3.80:1 1.51 3.80 0.18 2.85
30 4.98 2.1 3.70 8.52 8.52:3.70:1 2.3 3.70 0.48 3.00
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The usefulness of these curves lies in the fact that any measured
ellipse can be plotted on the graph and the amount of the shear
strain can be directly read off from its position in the plot. Moreover
we can unstrain the ellipse along its trajectory and determine the
value of the initial axial ratio, when f ¼ 0, and g ¼ 0.

For example, consider a point ‘P’ (Fig. 7) for an ellipsewith a final
axial ratio (Rf) of 3.65 whose long axis is oriented at an angle of
22.5� with the x-direction (f). On unstraining along its trajectory,
the orientation of the long axis of the ellipse would increase from
22.5� to 25� and then gradually decrease to 0� when it reaches the
y-coordinate axis at ‘Q’. The point ‘Q’marks the initial axial ratio (Ri)
of the ellipse prior to shear deformation, which is 1.3.

The measured pebble data for the YZ section have been plotted
on this graph (Fig. 8). In all but two locations the graphically
calculated g values (Table 4) fall within the range of 0.5e2.8 (with
a mean value of 1.43) and the initial axial ratio (Y:Z of the strain
ellipsoid of D1 deformation)varies from 3.7 to 6.5 (with a mean
value of 4.61). This initial axial ratio is due to the irrotational
orthogonal extension-contraction associated with D1. Only at one
location (No. 8) g has a very low value of 0.1, and the corresponding
initial axial ratio is 2.8. This value is far from the main cluster of the
plots (Fig. 8). It follows from Eq. (3) that the effective shear strain
would have been less if the same finite strain resulted from
simultaneous simple shear and orthogonal extension-contraction
(transpression). This would have no effect on the computed
magnitude of the orthogonal extension-contraction. (Fossen and
Tikoff, 1993; Tikoff and Fossen, 1993)

6.2. Calculation of 3-d strain ellipsoid after the D1 extension-
contraction strain

The horizontal shear does not significantly change the axial ratio
on the vertical (XZ) plane. Hence themeasured ratio can be taken to
represent the X:Z ratio of the D1 strain ellipsoid. If the initial axial
ratio determined from Fig. 8 assumes a value m : 1 on the hori-
zontal plane (YZ plane) and the strain ratio computed (vide Tables 1
and 3) on the vertical plane(XZ plane) be n : 1, then the 3-d strain
ellipsoid has an axial ratio of n : m : 1. The 3-d strain ratios have
been calculated for each location. These reflect the 3-d geometry of
the initial D1 strain. The results are listed in Table 4.

On plotting of these ellipsoids on the Flinn Diagram (Fig. 9) it is
observed that all of them lie in the flattening field close to the line
of pure oblate ellipsoids. The k-values (Flinn, 1962), which are
indicators to the shapes of the ellipsoids, are consistently less than
1 and are more or less constant (Fig. 10a). The k-values range from
0.01 to 0.55, most of them being less than 0.20. The finite strain
geometry is analogous to that for Type C transpression of Fossen
and Tikoff (1998) with equal stretching in two directions perpen-
dicular to shortening, that is, equal stretching in the vertical
direction and in the shear direction. The measure of the intensity of
deformation, d, (Ramsay and Huber, 1983) is extremely variable in
the regions south of Barr village (Fig. 10b). North of it d-values vary
from 3.02 to 4.64. Most of the g values fall within the range 0.5e2.8
(Fig. 10c). There is no spatial control on the values of the above
three parameters. Fig. 10 shows that the values are uncorrelated
with the distance from a reference point. The correlation coefficient
values (r) are 0.06e0.19, which are not significant at 90% confidence
level. Hence strain measurements clearly indicate that though on
outcrop scale the strain is broadly homogeneous, on a regional scale
there is strain heterogeneity.

7. Conclusions

The pebble shapes in Barr Conglomerate have resulted from an
earlier irrotational orthogonal extension-contraction strain fol-
lowed by horizontal dextral simple shear. The procedure of facto-
rizing the total strain into the two components has been discussed.
The computations indicate quite a high value of shear strain (mean
value of 1.43). This is consistent with the interpretation of the
earlier workers about the presence of a shear zone along the
western contact of the South Delhi Fold Belt. Though the strain
appears to be homogeneous in the scale of an outcrop there is
considerable strain heterogeneity on a regional scale. However,
there is no systematic spatial variation of the strain parameters. The
total strain as well as the earlier orthogonal extension-contraction
strain is of flattening type. Had the deformation been of trans-
pression type with simultaneous pure shear and simple shear the
magnitude of the simple shear component would have been less
than our computed value; the extension-contraction magnitude
would have remained the same.
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Appendix A

Let the equation of the initial ellipse (Fig. 6) afterD1 deformation
be,

Ax2 þ By2 ¼ 1 (A1)

The axial ratio of the ellipse would be O(B/A).
Subsequently this ellipse is deformed by dextral simple shear (g

taken to be positive) with displacement on the schistosity surface in
the direction parallel to x-coordinate axis. The transformation
equation representing this simple shear is:

x’ ¼ xþ gy (A2)

y’ ¼ y (A3)

Hence for Eqs. (A2) and (A3) we can write:

x ¼ x’ � gy’ (A4)

y ¼ y’ (A5)

The ellipse of Eq. (A1) would be transformed to a figure
given by :

A
�
x’ � gy’

�2þB
�
y’
�2 ¼ 1 (A6)

Expanding:

A
�
x’
�2�2Agx’y’ þ

�
Ag2 þ B

��
y’
�2 ¼ 1 (A7)

The Eq. (A7) is an equation of an ellipse with the form of :

Px2 þ 2hxyþ Qy2 ¼ 1 (A8)

Where,

P ¼ A; h ¼ �Ag; Q ¼
�
Ag2 þ B

�

It is to be remembered that the fraction O(B/A) is the measure of
the axial ratio of the initial ellipse.

The lengths of the semi axis of the final ellipse can be found out
by solving the characteristic equation (Ghosh, 1993; pp. 141e142).

S2 � I1Sþ I2 ¼ 0 (A9)

where two invariants I1 and I2 are given by the equations:

I1 ¼ P þ Q ¼ Aþ Ag2 þ B (A10)

I2 ¼ PQ � h2 ¼ A
�
Ag2 þ B

�
� ð�AgÞ2 (A11)

The roots of the Eq. (A9) are the two principal axes of the ellipse,
given by:

s1 ¼ 1
2
ðP þ QÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � QÞ2þ4h2

q
(A12)

and
s2 ¼ 1
2
ðP þ QÞ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � QÞ2þ4h2

q
(A13)

Replacing the values of P, Q and h in Eqs. (A12) and (A13) in
terms of A, B and g we get:

s1 ¼ 1
2

�
Aþ Ag2 þ B

�
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A� A$g2 � B

�2þ4ð�AgÞ2
q

(A14)

and

s2 ¼ 1
2

�
Aþ Ag2 þ B

�
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A� A$g2 � B

�2þ4ð�AgÞ2
q

(A15)

The axial ratio of the deformed ellipse is given by

Rf ¼ s1
s2

(A16)

The orientation of the long axis of the deformed ellipse is given
by the equation:

tanð2fÞ ¼ 2h
P � Q

(A17)

where f is the angle between the long axis of the deformed ellipse
with the x-coordinate axis (Fig. 6). Substituting P, Q and h in terms
of A, B and g, we get:

tanð2fÞ ¼ 2ð � AgÞ
A� Ag2 � B

(A18)

It is thus seen that the Eqs. (A16) and (A18) constrain the shape
and the orientation of the final strain ellipse that results from
simple shear superimposed on an initial strain with principal
stretches parallel and perpendicular to the shear plane (Fig. 6).
Appendix. Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jsg.2011.10.010.
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